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SUMMARY

A shallow spherical dome subjected to lateral pressure is & structure
for which the deformation departs appreclably from the linear theory at
relatively small values of the deflection amplitude. It is .also one for
which the buckling process is characterized by a rapid decrease in the
equilibrium load once the buckling load has been surpassed. For struc-
‘tures having this type of buckling cheracteristics the question arises
as to whether the proper buckling criterion to apply is the classical
criterion, which comsiders equilibrium with respect to infinitesimsl
displacements, or the finite-displacement "energy criterion" proposed by
Tslen.

In this paper the problem of the finite displacement and buckling
of a shallow spherical dome is Ilnvestigated both theoretically and exper-~
imentally. In the theoretical approach the nonliinear equations are con-
verted into a sequence of linear equations by expanding all of the vari-
ables In powers of the center deflection and then equating the coefficients
of equal powers. The basic parameter for the shallow dome A 1is propor-
tional to the ratio of the central helght of the dome h to its thick-
nesas +t. For small values of this ratio the expansions converge rapidly
end enough terms are computed to determine the buckling load according
to the classical criterion. For higher values of h/t, convergence
deteriorates rapidly and it was not possible to determine the buckling
load with the number of terms which were computed. However even for
these higher values of h/t +the deflectlon shapes are determined for
deflection amplitudes below the amplitude at which buckling occurs. These
deflection shapes are characterized by their rapld change as h/t
increases and by the fact that, over most of the range of h/t studiled,
the maximum deflection does not occur at the center of the dome.

Experimental results seem to indicate that the classical criterion
of buckling is applicable to very shallow spherical domes for which the
theoretical caleulation was made. A transition to energy criterion for
higher domes is also indicated.
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INTRODUCTION

The development of the theory of bending of thin-walled spherical
shells has a long record. A survey of the problem can be found in refer~
ences 1l and 2. The fundemental equations are developed by Hans Reissnert
(1912) who shows that, for a thin-walled spherical dome thet is not shal-
low, the membrane stregses in the shell maintain equilibrium with the
external pressure, while the bending of the shell has relatively little
effect except near the edge of the shell where the shell adjusts 1tself
quickly to the prescribed boundary conditions. Bending in the shell is
therefore essentlally an "edge effect" or "boundary layer" phenomenon.
Asymptotic solutions of the bending problem have been obtained by
Blumenthal (1912), Havers 51935%, Jacobsen (1937), and othersl on the
basls that the parameter R/t) is very large, where R 1is the radius
of the spherical shell and t, Iits wall thickness. Both symmetrical
and nonsymmetrical loading and edge conditions have been treated,
including the case of a dome supported on columns.

The asymptotic solutions are, however, not valid for shellow sepheri-
cal Bhells,2 for which the effect of edge condltions 1s no longer limited
to a thin layer near the edge and the interaction of bending and membrane
stresses 1s strong. In 1946 Eric Reissner (ref. 3) developed the gov-'
erning equations for shallow spherical shells on the explicit assumption
that the ratio h/a is so smell that (h/a)2 1s negligible in compari-
son with “h/a, h being the height of the dome and a its radius (see
fig. 1). A few speciasl cases are solved in reference 3.

Reissner's solutions are based on linearized equations. Since the
effect of bending on the membrane stresses is strong in the case of a
shallow dome, one nsturally asks the question: To what extent ia the
process of linearization valid? Expressed in terms of the ratio of the
vertical deflectlon st the center of the dome to the wall thickness Wo/?,
the questlon is: How soon does the solution deviate from linearity as
wo/t increases?

To asnswer this question the nonlinear problem is treated in the
present paper. The particulasr problem of & shallow spherical shell with
a clemped edge carrying a uniform pressure 1s chosen so that a convenient
experimental comparison can be made. It is shown thet the nonlinear
character depends upon & parameter A vwhich is defined as

al

A2 =\12(1 - p2)E§ (1)

1see Timoshenko's book, reference 1, for references to original papers.

2By shallow 1s meant a spherical segment for which the ratio of the
height to the base radius is small, say, less than 1/8.
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where p 1is the Polsson's ratio and t, a, end R are as previously
defined (see fig. 1). The range of wb/t in which the linear solution
is valid is small indeed. For example, at A = 4, the equilibrium pres-
sure given by the linear solution is, respectively, 9, 23, and 50 percent
too high when wy/t is 0.1, 0.25, and 0.5.

Consider now the problem of buckling of thin-walled spherical shells.
For a complete sphere under uniform pressure, the classical solution, on
the basis of linearized equations, is obbtalned by Zoelly (1915), Schwerin
(1922), and Ven der Neut (1932). (See ref. 2, p. 491.) The buckling
stress 0np 18 given by

%e T — (Ucr . 'gR—t clcr) (2)

e

where q,,. 1s the critical value of external pressure. This stress has

the same magnitude as the critical stress for an axislly compressed
cylindrical shell of radius R and of thickness t. It is relatively
high in comparison with experimental results. The corresponding buckling
mode predicted by the theory is also at variance with laborstory experi-
ence. To reconcile the differences between theory and experiment Von
Kérmén and Tsien in 1939 (ref. 4) introduced a new concept into the
theory of elasticity: the "lower buckling load." They discovered that
for values of pressure ¢ considerably below that given by equation (2)
quite different stable states of equilibrium exist, which could be
revealed only by sbandoning the classical linearization of the problem.
The minimum of such values of q 1s the lower buckling load Q- If

q exceeds Ay the chances are great that buckling will occur. In
reference 4 the lower buckling load is computed (subject to a number of
simplifying assumptions) with respect to a special class of buckling
modes. Friedrichs in reference 5 avoids some of the arbitrary assump-
tions by applylng asymptotic integration in the manner of a boundary-
layer theory. Application of Friedrichs' equations, however, yilelds no
minimm buckling load, and it 1s pointed out (ref. 6) that the minimum
obtained in reference 4 i1s due to the special form of displacements
assumed in that investigation.

The final "energy criterion" of buckling is formulsted by Tsien in
reference 6. Tt is stated that under average laboratory and actual serv-
ice conditions the most probsble equilibrium state is the state with the
lowest possible energy level. In other words i1t is assumed that there
are disturbesnces of sufficlent magnitude so that the trensitions from
higher energy levels to lower energy levels are always possible. Two
conditions must be satisfied in defining the "possible energy levels":
(1) the corresponding external forces and internal stresses must be in
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equilibrium; (2) the geometric restraint and loading conditions, if any,
must be satisfied. Tsilen points out that these necessary conditions for
possible energy levels are not checked in references L and 5. When the
check is applied (ref. 6), a lower buckling load is obtained for spheri-
cal shells on the basls of Friedrichs' equations. The agreement with
experiments is good.

It appears that these arguments spply equally well to spherical
domes and to the complete sphere. Therefore, the first theoretical ques-
tion to be settled is whether the "classical criterion" of buckling or
the "energy criterion” should be used in calculeting the critical buckling
load. The classical buckling criterion 1s based on the assumption that a
given state of equilibrium of a shell becomes unstable when there are
equilibrium positions infinitesimally near to that state of equilibrium
under the same externsl load. Thus in applying the classical criterion
an equilibrium gtate is compared with its neighboring equilibrium states
and the ineipient buckling is revealed by a negative slope of the load-
deflection curve, that is, when an increase of deflection corresponds to
a decrease in the corresponding applied loasd. The important contrast
between the classical criterion and the energy criterion is that in the
former only a continuous load-deflection process is considered, while in
the latter a Jump to the state of lower energy level is permitted even
though the intervening states involve higher energy levels. The linear-
ization of the governing equations, ordinarily made purely for mathemati-
cal simplicity, should not be regarded as a part of the classical
criterion.

Although the energy criterion seems plsusible, nevertheless it can
be verified only by comparison with experiments. The energy criterion
necessarily yields a buckling load which is never greater than that given
by the classicel criterion. If there is & wide difference between the
two buckling loads the problem becomes simply to choose the criterion
that glves closer agreement with the experiments.

For shallow spherical domes the buckling load calculated on the
basis of the classical criterion, but without linearizing the governing
equations, 1s known only in very few cases. In the comparison with
experiments presented in figure 20 of referer-ze 6, the curve labeled
"elassical theory" is reslly the one given by equation (2), which is
applicable to a complete sphere and is calculated from linearized equa-
tions. When the nonlinear equations applicable to a-shallow spherical
dome are used the buckling load is lower than thet glven by equation (2).
For example, when A = 4  the calculation of the present report gilves a
buckling load which 1s about one-half that given by equation (2). Thus
the wide difference between the classical theory and experiments exhibited
in the figure cited above may be entirely caused by an improper mathemati-
cal process.
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To elarify the argument further, consider the case of a flat arch,
a8 a two-dimensional anslog of the spherical dome. For such an arch two
buckling modes sre possible. If the arch rise 1s high, it buckles in the
mode shown in figure 2: +the center line of the arch remains essentially
"inextensional.” If the arch rise is small, it may buckle downward with
s sudden reversal of curvature, as shown in figure 3: a phencmenon some-
times described as "oil-canning”" or "durchschlag." The axial compressive
strain plays a dominant role in the latter case and linearization of the
governing equatlons is not permissible. A detailed study made in refer-
ence T shows that in practice the classical criterion agrees betier with
experiments, except for very low arches (arches whose rise is of .the order
of the wall thickness) for which the energy hump tends to vanish and the
gap between the two criteria tends to be closed.

For shallow spherical domes the prevailing buckling mode is of the
oil-canning type, in which the membrane stress plays an important part,
and is basically a nonlinear phenomenon.

There exists only one paper on the oil-canning of shallow spherical
domes based on the classical criterion. This is Bilezeno's work (ref. 8)
which treats a shallow dome whose edge 1s free to expand so that the mem-
brane stress in the radial direction vanishes on the edge; and the dome
is subjected to a concentrated load acting at the center. The following
equations (which are equivalent to those of the present paper) are
obtained:

azv av, r2
o 4%Vo o _ (T ) -y X
rdr2+rdr v°+r(R+\_F+(2 p.)R\F-l-
1-w 2 _px(-u1 ay
2 = " ox T Bt \R  ar (3)
r2ﬂ+rﬂ-\h—££+ﬂl(£+¢) (%)
a2 ar I \R
__® (%o Yo, /r _l_)
S LA L) ®

where P 1is the central load, V¥ = %% is the slope of the deflection

surface in a meridional section, w being the radial displacement normal
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to the original spherical shell, and Vo 1s the component of displace-
ment normal to the axls of symmetry, that is (see fig. 1),

Vo =ucos 6 ~ wsin @ (6)

Other symbols are defined in the list which follows this section.

Blezeno makes the following simplifying assumptions to obtain a solution:
(1) that the term on the right-hand side of equation (3) may be neglected;
(2) that in equations (3), (5), and on the right-hand side of equation (k)
the slope of the radilal displacements V¥ can be written as

W=¢l=01§+02%log% (7)

where C; and Cp are two undetermined constents. Equation (4) is then

solved with proper boundary conditions. Iet the solution be denoted by
V5, which, of course, is different in form from equation (7). Biezeno

then determines the constants C; and Co, by requiring that V3 and V¥

yield the same values of vertical displacement at the edge of the plate
(r = &) and at the center (r = 0). The load-deflectlon curve can then be
calculated from equation (7) and the buckling load determined.

The influence of Blezeno's silmplifying assumptions on the buckling
load is not easy to assess; and there exist no experimental results to
compare with the theory.

The case consildered in the present paper is that of a shell clamped
at the edge and subjected to uniform lateral pressure. The equations of
equilibrium (equivaelent to egs. (3), (4), and (5)) are solved as pertur-
batlion series expressed in powers of the parameter wb/f, that is, the
ratio of the deflection on the axis of symmetry and the wall thickness
of the shell. The load-deflection curve so determined 1s used to obtain
the buckling load.

Relatively few assumptions are made in the present calculstion.
Unfortunately the perturbation serles seems to deteriorate rapldly for
large values of A, so the result is satisfactory only for A of order 5
or smaller. In this range of A the buckling loads computed on the
basls of the classical criterion agree quite well with experiments.

On the other hand the calculation of the buckling load on the basis
of Tslen's energy criterion alsc offers considerable difficulty. If the
formulas of reference 6 are extended to cover the Bhallow shells studied
in the present paper it is found thet the so-called "lower buckling loed"
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has an equal or higher value than that glven in equation (2) when A< 10.
This unreasonable result is obtained because the energy expressions and
the mode shspe assumed are not sufflciently accurate. It 1s not clear
how to improve the results. Theoretical deflection curves derived from
the bending theory do not permit a very simple representation. In eny
case, the refinement of Tsien's calculation would have been a major
endeavor. For the same reason the calculation of the buckling load on
the basis of classical criterion using the Rayleigh-Ritz method is not
pursued. Therefore the most convenient theoretical determination of the
critical buckling load remains an open questlon.

In order to do justice to either the classical criterion or the
energy criterion, further theoretical study must be made for A in the
range, say, from 5 to 15. A study of all available experimental data on
the subject seems to show that the classical criterion of buckling holds
for very shallow spherical domes, while a transition to energy criterion
takes place at some intermediate values of A of order 6.

One more point should be mentioned before the presentation of the
main analysis. In reference 5, Friedrichs suggests that it may be possi-
ble that a boundary layer occurs at the edge of a certain segment, the
width of which in its turn shrinks to zero with the thiclkness of the
shell. This -suggestion seems plausible because as the shell becomes
thinner and thimmer the bending of the shell becomes less and less impor-
tant. In the limit t-—2 0 +the deflected surface must be an "applicable"
surface of the original.5 In the upper pert of figure 4 the shell repre-
sented by the dotted line is epplicable to that represented by the solid
line; in other words, a deformation of the solld line into the dotted
line involves no strain energy due to the membrane stresses. To account
for the small but finite bending energy of the shell the deflection sur-
face may take the form represented by the lower part of figure 4. A
boundary leyer may be developed at the segment angle a. This conjecture,
however, turns out to be lmprobeble for a shell subjected to uniform
externsl pressure; since 1t can be shown that the segment angle o +tends
to zero at a higher order in % (the shell thickness) than does the
boundary-layer thickness. Therefore the boundary layer can be developed
only at a pole « = O which is the case presented in reference 5.

The investigation presemted in the present paper was conducted at
the California Institubte of Technology under the sponsorship and with
the financial assistance of the Nationsl Advisory Committee for Aeronautices.

3wo surfaces are called “applicable" to each other in differential
geometry if one can deform into the other by continuous bending without
stretching or tearing the surface.
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SYMBOLS

An,B,sCn,Dn,Ey integration constants

a base radius of shell '

coefficients in power-series expansion of Fo 1in terms
of Ax; see equation (A5)

8nsbn,Cn

3

D= 27

12(1 - p2)
d,,&n,hy, coefficlents in power-serles expansion of F, in terms

of AX; see equation (AT)

E Young'!s moédulus
Fpn functions of f, and w,; see equation (28)
fn coefficient of expansion for Sr in powers of W,
h central height of shell above base plane
K " constant; see equation (41)

k= Y12(1 - p2)

M, radial bending moment per unit length
M circumferential bending moment per unit length
N radial membrane force per unit length
N. circumferential membrane force per unit length
P == ”é(é)hq
E t
Pn coefflcient of expansion for P in powers of W,
Q shear force per unit length perpendicular to middle sur-

face of shell

a pressure on surface of shell; positive when directed
downward
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S =8
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2

S = a__

EtD

t

u

W=w/t

WO = W’o/t

W

¥n

Wy = w(r = 0)

X =rfa

20

a

an,Bns7n

B

o

€r

initial radius of curvature of shell

horizontal distance from exis of symmetry of shell

thickness of shell
radial displacement of middle surface of shell measured

tangential to initial surface and positive in outward
direction

vertical displacement of middle surface of shell meas-
ured perpendicular to initlal surface and positive in
downward direction

coefficient of expansion for W in powers of W,

initial distance of point on middle surface of shell
above base plane

segment angle of s possible deflected surface

functions of 6, and @,; see equations (35)

semi-included angle of shell
finite~difference interval
radial strain

circumferential strain
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n = x2/h

6 = sin~1(r/R)

O perticular integral of equstions (26) for £,
2 _ ka? _ 2\ b

M= B~ W50 - 2

v Poisson's ratio

o = bei A ber'A + (1 - ber A) ber'a

) circumferential position angle

Py integrals of w,; see equations (29)
Subseript:

er critical

THEORETICAL ANALYSIS

Derivetion of Equations

Congider the spherical shell segment of radius R, base diameter 2a,

height h, and constant thickness + shown in figure 1. The initisl
position of a point in the central surface is glven by the cylindrical
coordinates r, @, and z,, where r is the radial distance from the
center, measured parallel to the base, ¢ 1s the circumferential angle,
and 2z, 1is the vertical distance, measured upward, from the base plane.
It 1s sssumed that h/a is small enough that

~
2
zo=h+\/R2-r2-R~h-%-§—
(8)
d%0 . _r [
ar R
~r

The deformstion of the middle surface is assumed to be radially
symmetric and is therefore specified by u, measured tangential to the
mlddle surface in the outward radial direction, and w, measured perpen~
diculer to the middle surface in the downward direction. 'Phe deflections
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2
are considered to be finite, but small enough so that (%%) can be

neglected with respect to unity.

Since, under these conditions, the magnitudes of vectors tangential
to the middle plane are‘equal to theilr components parallel to the base
plane, the equations for forces and moments in the middle plane are
identlcal with those for a flat plate. That is,

S (a) - ¥ - ra =0 (9)
L(m)-% =0 (10)

where N, and Ny are, respectively, the radial and circumferential

membrene stresses, M, and My are the corresponding bending moments,

and Q is the shear stress in the direction perpendicular to the deformed
middle surface. Vertical equilibrium of & central cylindricsl section of
radius r (fig. 5) requires that

r
1 dz, dw
Q=- ;'-/; rq dr + Nr(_dr - _dr) | : (11)

where q is the applied pressure. Substituting equation (11) into equa-
tion (9) and using the approximstion equations (8) result in

GOREEA

r

rq dr + rNr(E + %) =0 (12)

The bending moments are expressed in terms of the deflections using
the strain-deflection relations

> (13)
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where €, &and € are the longitudinal strains of the middle surface
in the radial and circumferential directionms, respectively. Then

. = M
EE lau _w l(dw 2 u_ W
Ny 5= — = - = + ==X = - =
o 1-u2[dr R 2dr) u(r R
ﬂ
Et la 1/aw\
N, = —E& _Ju _ W, _H_E.;._(.E >
8T 2R TR Fler TR 2lar |
S (14)
a%w . p aw
My = ~DI&EX 4 L O¥
r D(er + = dr)
- pftaw, &
Mt D(r ar + M dre)
5 o
where D = ———EE—-——-.
12(1-;@)
Using these expresslons for M, and M., equation (12) vecomes
dil d dw T [sh t
Dr —|= — — = rN. —-+._.W+ dr 1
ar|T &\ ar r(R dr) fo i (15)

This is the first basic equation. Now from equations (13)

u W 1 W
F=€t+—=EE-(N.b—er)+§
so that
1
-——d‘u = == ——d (I'Nt - P-I'Nr + Bt _WI‘) (16)

These values are substituted in the first of equations (1) to obtain
a8 second relation between N, and N.:
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Nl‘=l_Et_2'EtarrNb prN,, +Etwr> ¥, () @b er> (17)

Combining this equation with equation (10), the second basic equation
is obtained:

2 |
414 1 pyfdw raw _
rdrrdr@ I.)+2Et<dr)+Ethr 0 (18)

Knowing w and N,, Ny cen be obtained from equation (10). 1In
the problem to be studied q 1s a constant so that equation (15) becomes

D d[ )] (E +2ar (19)

These equations are transformed into'nondimensional form by the use
of the following variables:

q
x ==z
a
- W
We=g
k2 = 12(1 - p2)
2
Sy, =2 N
B> > (20)
2
=8 _
St_E‘t_th
p - L=y
- 25R) «
2 _ kel i
N = |
J
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The parameter 22 can also be expresséd as (see fig. 1)

- ~
A° = k%sineﬁmkjﬂB
or > (21)
A2 =k L __EEEEE__ =kx8 (14+cosp)~ckll
" "t 1l-cosp & t

-’

Thus for the assumed range of B, Ke "1s proportionsl to the ratio
of the central height of the dome to its thickness and can therefore be
interpreted as representing the ratio of the compression stiffness to
the bending stiffness.

Upon substituting these new variables, equations (18), (19), and (10)
become

a0 2@ £ @2
rehebe)] ferth-e @
8, = ﬁ(xsr) (2k)

With A =0 (R = ») these are Karmén's equations for the finite
deflectlon of a flat plate, expressed in polar coordinstes. Their deri-
vetion is exactly analogous to Chien's derivation of the equations for
the finite deflection of a flat circular plate (ref. 9).

Expension in Terms of Wy(=woft)

As in Chien's paper (ref. 9) the procedure used for solving equs-
tions (22), (23), and (2L4) is to consider the center deflection
ratio W(0) = Wo &as a parameter and to expand all of the variables in
powers of W,. Thus
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2 3 a
P = leo + pEWb +pzW” + . .
2 3
W o= wy (X)W, + wo(x)W,~ + wj(x)Wo + .04 ) . (25)
3 2 3
r = T1(X)W, + £o(x)W" + £3(x)W5” + . . U

These expansions are velld for small enough values of the deflection
ratio W,, but thelr exact range of convergence is unknown. For the
case of the flat circular plate Chien obtained good convergence for values
of W, as high as L.

Substitution of these series in equations (22) and (23) and the
equating of equal powers of Wy result in & sequence of pairs of simul-
taneous equations for fﬁ and w,. Each of these pasirs of equations

can then be combined to obtain an equation for fn alone

S ) R e
or
:;i i:j; %%-%%+ﬁn=-%pnﬁ-% (26b)
plus an equation for w, in terms of £,
wn=;\12‘_xa_i;(x2fn)-i—chn+En (27)

where E, is a constant and ¥, and ¢p are the following functions:
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F, =0 A
2
_a21 dwy 3 g1 a 1/@1
Fp=kN 2% a—x“'zafa'é(a)
21 aw. dwp 1411 4 /dwy dwp
F3 = 1 i(feax—l"*flax—)"ia[zaga
a a [ (26)
_ 121 W. Wy
dwq & aw. 2
14 j1._al|dv dvs 1( 2)
X dx |X dx|dx dx 2\dx \J
¢y = O A
° =f";(931_)2@c_
S o B/ E (29)
29
xdwldWde 4
Pz = o ™ & x
q) _ X }-(dWe)z + dwl delg
b= /o 2\& & & | ¥
.

Upon meking the substitution Uy = x°

dn2 dn2

equation (26a) becomes

2 2
L<;5i—fn)+ Aong, = --alkx?-pn -%Fn

(30)

which can be recognized as the equation for the lateral deflection of a
linearly tapered beam on an elastic support whose spring constant is a

linear function of positlon along the span.

ful in the numerical work which follows.

This interpretation is use-
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"The solution of the homogeneous part of eguation (26a) or (26b), that
is, the complementary function, is

fn = %(An ber'Ax + By bel'Ax + Cp ker'Ax + Dy kei'?xx)
where

ber'z = ii-ber z
dz

and the ber and bei functions are defined in terms of Jdgy, the zero-
order Bessel function of the first kind, by

Jo(zi5/2) =ber z + 1 bei z
with an analogous relation between ker z, kei z, and Kb(ziB/z)
Boundary Conditions
The boundary conditions for a clemped-edge shell subjected to a

radially symmetric distributed losd are

at x=0, ’T

‘ (31)

at x

]
[
-

J

To satisfy the first two conditions it 1s necessary that

Cpn=Dp =0

In terms of the expansion coefficients, eguations (25), the remaining
boundary conditions become
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’\
wn=0
ax
dfp

Because of the nature of the expansion there ls the additional con-
dition that

1, n=1
wy(0) = (32b)
o, nga

w

The constant E, in ejuation (27) can be eliminated by combining
equations (32a) and -(32L) so that the boundary condition on w, becomes

vn(0) - (1) = 2 (32¢)

1Y)

Let 6y be the particular solution corresponding to ¥,, on the

right-hand side of equation (26a); then the complete solution for i
becomes

Pn

fy = %‘(An ber'Ax + By bei‘?_\x) + 6p - 2L (33)

wion
>

while

Wp = %(An bel Ax - By ber 7\x) - 7\—12;- gx—(xzen) - %g Py + By

Substitution of these values into boundary conditions (32) and their
solution for Aj, B, and p, result in

Ap = %.E:n ber'\ + Bp(l - ber xﬂ (34a)
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By = (a bei’) - By bel }) (3kb)

Py = _L {(l + [.1)[(be::"7\)2 + (bei'?x)g] +

6(1 - u)p
A(ber'A bei A - bei'A ber A) or.n}+

{}l + p)[zl - ber A} ber'A - beil A bei'?] +

A bei 7\} By |+ 75 (3he)
where
p = bel A ber'A + (1 - ber A) ber'r (35=)
=1 pe)
11 4 (.2 k=
oan = A% dx(x e,,) = ?, (1) (35D)
_1jafL a
Pn = 7\-—2 a[; a(xeen):] x=1 . (550)
2 1 4de
= 8 ke 44 a
™ %_(n-'-l"l-ld‘x)x:l (35a)

First-Order Solution

The particular solution 87 of the first-order equation is zero
and the equations for A;, By, and p; reduce to
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A = A ber'A _ 4
, ==L h
kp :
A bei'h
B, = &4 ——2=
1 o
2 > (36)
A 2 2
Py o= ——— (1 + u){kber'%) + (bei'%)i] +
P61 - we
A(ber'A beli A - bei'A ber A)
o/

The values of Ay, B3, and p; are given in table 1, while the

values of w; and f; are given in tables 2'and 3 and are plotted in
figures 6 and T, respectively. This first-order solution is identical
with the linear solution previously found by Reissner (ref. 3).

For the higher order equations no solution was found in terms of
known functions and so it was necessary to resort to power-series expan-
sion and numericel methods.

Power-Series Solutions

Judging from the work of Chien (ref. 9) it was felt that calculation
of the first two terms, pj and pp, of the expansion for the pres-

sure P would permit at least an epproximate determinatlon of the
buckling load. Therefore a power-series solution for 6, was obtained

even though it was realized that the succeeding solutions could not be
obtalned by thils method because of the involved form of the functions F,.
The procedure and formulas used are shown in appendix A. Since the
expansions are all in terms of Ax 1t was recessary to restrict the
calculations to values of A S 8. The values of pPo obtained are shown

in table 4 and plotted in figure 8. These values are negative for small
values of A, but become positive at A = 6.5 and are rapidly increesing
at A = 8. Since buckling can occur only when some of the p,'s are nega-

tive 1t was clearly necessary to obtain the higher order terms of p,.
These additionsl velues of p, were obtalned numerically.

Numericel Solutions

The differential equations (26) contain the unknown parameter p,
and also heve the unwieldy boundary condition that S, 1is finite at

x = 0. As a result a complete numerical solution would be very difficult.
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Therefore only the particular solution is determined mumerically, using
arbitrary boundary conditions. The required boundary conditions are
then satisfied using the known solution of the homogeneous equation.

In terms of the finite-difference approximations

1 (x) = ELS-IEE'(X +8) - £fx - Sﬂ
£ (x) =i2 f(x +38) - of(x) + £(x - 5):l
)
> (37)

£r11(x) = ?E‘(x+2§) - of(x + 8) + 2f(x - 8) - f(x - 25{]

fiv(x) = glEE'(x + 28) - bf(x + 8) + 6f(x) - 4f(x - &) + f(x - 28)]
</

where © 1is the difference interval; ejuation (26a) (with the constant

p7\2
term - g-—%;— omitted | becomes

6 6 L 4 6 3 3
(5—4 e A )Bn(x) i <'a_1+ T 3% 52%2 | o3 O + 8) +

-k, 6 5 4.3 - 24 3

( Py wll- + 25x3)en(x B) + (54 + 63x)en(x + 28) +

(l -2 )e (x - 28) = 16Fy(x) (38)
EE 8% & 2

The desirable boundary conditions for 6, are the ones which glve
a smooth solution. For the tapered-beam analogy of eguation (30) the
obvious boundary conditions meeting these requirements are those repre-

senting unsupported ends. When these boundary conditiohs are transformed
in terms of the variable x they become
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at x =0, a
3
48 _ &% _
& 3o
at x =1, ? (59)
a®e, ade, o
dx2 ax> J

A first attempt to solve the finlte-difference equations (39) by
relexation was unsuccessful because of slow and erratic convergence.
Instead, Crout's method of solving simultaneous equations (ref. 10) was
used to determine the values of 6, at 11 points (5 = 0.10) at once.
This could be done rapidly, but unfortunately 11 points were not enough .
to determine accurately the end values and derivatives which were
required. Instead of decreasing the spacing to 0.05 throughout, it was
decided to add two end sections from O to 0.3 and from 0.7 to 1.0 with
0.05 spacing. The solutlons in these end sections were Jjolned with the
original solution at the 0.30 and 0.70 statlons where the function and
its first derivatlve were matched. Since the higher derivatlves were
small at the junction points (especially for A = L4 and T) this method
was adequate, but dld cause some trouble when higher derivatives were
reguired for the succeeding calculations.

Calculations of 6, were made for A =4, 7, 10, and 13, while
for A =4 and 7 the calculations were comtinued to determine 93

and eu. As A Increases convergence of the series for P deteriorates
rapidly and the function 6, has increasingly large oscillations. It

was declded therefore not to continue the calculstions for A = 10 and 13.
The values of P obtained are shown in table k, while the values of wyp

end f, are shown in tables 2 and 3 and plotted in figures 9 and 10.

For A =4 the convergence of the series for p, Wwas very satis-

factory, the contribution of the fourth-order term still being small at
the critical buckling load. In figure 11 is shown a plot of load P
versus the cemter deflection ratio W, and in figure 12 are shown the

deflection modes for several values of the center deflection ratio W,.

These deflection modes have their maximum at the center, and as W, grows
they become increasingly peaked toward the center.

For .A =7, however, the convergence is poor and the coefficlents P,
all being positive, no buckling can be determined using Just four terms.
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The convergence is good enough to determine the deflection shapes W
for small values of W, and these are plotted 1n figure 12. These

deflection shapes give an explanation of why po 1is positive (which

implies increasing stiffness with respect to the center deflection as
the load increases) since they show that the maximum deflection is no
longer at the center and that wlth incressing load the center deflection
becomes & progressively small portion of the meximum deflection. This
characteristic is corroborated by the experimental measurements.

The deflection modes for A = 10, which are also shown in figure 12,
exhibit the same characteristic, but with the position of the maximum
deflection moved cutward toward the edge. However, since these curves
are calculated using only two terms of the expansion for W, these curves
should not be taken as indicating accurately what happens at the larger
values of Wqe

The rapid change which must occur at buckling from a shape in which
the maximum deflection occurs near the edge to one in which the maximum
deflection ocecurs at the center 1s probably also an explanation for the
poor convergence. Since the experimental results show that at A = 10
the maximum deflectlon is again at the center 1t may be that for these
higher values of A the convergence is actually improved. However, to
obtain accurate values of 6, for these higher values of A it would
be necessary to start with a smaller finite-difference interval than was
used here.

Since the influence of the Pz and p) terms at the buckling load

for A =4 was small, it was felt that for A <5 an adequate spproxi-
mation to the buckling load could be obtained using Just the first two
terms p; and ps. The critical conditions occur when &€ -0 so

aW,
that for
2
the critical conditions are
7Y
Wy = 2L
Ccr ~ 2ps
f (ko)
-912
N,
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This value of P,, 1s plotted in figure 13 where it is compared
with the experimentel results. The minimum value of A for which Pgp

exists 1s that for which the critical deflection equals the initial

height of the dome, thet is, for W, = h/t.
cr

EXPERTMENTAL PROGRAM

Equipment

An experimental program was carried out on a series of shallow domes
having a base diameter of 8 inches, nominal radii of curvature of 20
and 30 inches, and nominal thicknesses varying from 0.0%2 to 0.102 inch.
The edges of the specimens were held between two rings which were bolted
to a circular plate (figs. 14 and 15) thus providing a rigid built-in edge
support and & closed pressure chamber. A separate set of clamping rings
wes used for each of the two radii of curvature. The specimens were
subjected to & uniform normal load using both oil and air pressure; the
01l provided an approximation to a constant volume characteristic during
buckling while the air provided a constant pressure characteristic.

The specimens were made by spinning from flat sheet. After unsuccess-
ful attempts to heat-~treat aluminum spinnings, magnesium alloy QQ-M-Ul was
selected because of 1ts favorable ratio of yield stress to Young's modulus
campared with other non-heat-treated metals. Magnesium slso has the
aedvantage that since it 1s spun while hot most of the residual stresses
are eliminated. This is evidenced by the small separation when a radial
cut is made in a magnesium spinning. Because of the difficulty of
spinning such shallow shells the preliminary specimens were very dis-
eppointing, but by & combination of spinning on concave and convex molds
the quality was greatly improved. Unfortunately it is still not so good
as would be desired.

Pressure measurements were made using a Bourdon tube for pressure
over 20 psi and & mercury mancmeter for pressures under 20 psi. Excep-
tlons were two of the early specimens having low buckling loads which
were tested using the Bourdon gage. This gage of course gives a closer
approximation to a constant volume characteristic than does the mencmeter.

Deflection measurements were taken with a 0.00l-inch-~scale dlal gage
riding on & channel beam fastened et its ends to a.circular ring which
rotated in a groove cut in the upper clamping ring. Readings were made
to the nearest 0.0005 inch. Traverses were made on two or more diameters
to determine the initiasl shape of the shell and were repeated at intervals
during the loading. Intermediate measurements were also made of the cen-
ter deflection. Because of the variations of the specimens fram a true
spherical form the questlon arose as to what should be taken as the
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radius R from which the parameter A was calculated. It was decided
to assume that the central rise h would determine the radius since A
cen be simply expressed in terms of h (egs. (21)) and because experi-
ence with the buckling of shallow arches showed that for arches having
the same central height small symmetricel varietlons in shape have only
a small effect on the buckling load. In figure 16 the variations from
the gssumed radil are shown for typical examples of each of the six com-
bingations of the two nominal radii, 20 and 50 inches, and each nominasl
initial sheet thickness 0.032, 0.054%, and 0.102. Tt is seen that the
variations increased markedly with the thinness of the sheet and the
flatness of the dome.

01l Tests

The oil pressure tests were made first, and two or more tests of
each combination of thickness and radius were made. The early preliminary
tests made on aluminum samples all showed a very distinet unsymmetrical
buckling mode. This is believed due to the high residual stresses
resulting from the spinning operation since the majority of the magnesium
specimens buckled symmetrically. In the cases in which unsymmetrical
buckle did occur in the magnesium specimens the mode was not of the over-
all unsymmetrical form such as the unsymmetrical mode of vibration of a
flat circular plate. Rather it appeared that the buckles themselves were
inherently symmetricel but were displaced from a central position on the
shell, probably because of initial asymmetries of the shell.

The unsymmetrical buckling occurred only in the range of A between
6.0 and 8.6 and was sssociated with a prebuckling deflection mode in
which the displacement at about half the radius from the center was
greater than that at the center.

In figure 16 are shown the deflection curves of the specimens. .
There 1s a distinet change in the deflection modes as A increases.
For A near 4 the deflection is peaked at the center and decreases
steadily toward the edge. As A increases, the pesk gradually flattens
out, until at A = 5.45 the maximum deflection no longer occurs st the
center. Instead, at large deflections there are two peaks symmetrically
placed at about a half radius from the center. With a further increase
in A the peaks move outward until finally when A = 8.98 a third peak
appears in the center. This gradually becomes the predominant pesk.
These trends agree very well with the theoretical deflection eurves for
A=1L4, 7, and 10 shown in figure 12.

In figures 11 and 17 are plotted the curves of pressure versus cen-
ter deflection of the specimens. PFor low values of A (A< 5), the
specimens buckled in a continuous manner. As more oil was pumped into
the chamber the pressure inecreased more slowly, reached a maxlmm, and
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then decreased. But for A > 5, the process was dlscontinuous. Usually

there would be a slight movement of the shell without the eddition of oil -
followed by a sudden jump to a lower pressure and & greater displacement.

There was no regular trend in the ratlio of the pressure after buckling

(P to the buckling pressure P,y a8 A Increased and also sur-

er
2

prisingly no significant difference in this ratio between the tests made
using the Bourdon tube and those using the mancmeter.

Air Pressure Tests

For the air pressure tests an accumulator tank was connected to the
alr line close to the testing fixture so that the buckling process was
practically a constant pressure process. 3Buckling occurred very suddenly
and with a sharp report. The final buckled shapes were symmetrical with
deflectlons very much larger than those of the oll tests. Deflection
traverses were made during loeding, but it was inedvisable to make them
at -loads approaching the expected buckling load. Two exasmples of these
deflection traverses are shown in figures 16(g) and 16(h).

The specimens remained in their buckled position after the pressure
was released. An approximste determination of the pressure reguired to
unbuckle them was made by unbolting the clemping rings, inverting the
rings with the specimens still placed between them, and then bolting the
inverted assembly to the base plate. The pressures required to unbuckle
the specimens were conslderable and are included in table 5. .

DISCUSSION -

The physical parameters and buckling loads of all the speclmens are
shown 1in table 5. In figure 18 are plotted the buckling loads as s func-
tion of A. The oll pressure tests are shown with black dots, while the
air tests are shown with open circles. For the oil tests the points at
the lower ends of the dashed lines indicate the value to which the pres-
sure Jumped during the buckling process, whil» a wing on the left of a
lower circle indicates an unsymmetrical buckling mode. When plotted on
logarithmic paper the results tended to follow two intersecting lines.

In figure 18 the corresponding power-law curves are shown.

In figure 13 the experimental buckling loads are compared with the
theoretical loads calculated using two terms of the series for A < 5,
and the one point calculated using four terms for A = 4. In figure 11
the corresponding curves of load versus center deflection are also com-
pared. Although the experimental results are low compared with the =
theory, the difference (approximately 15 percent at A = 4) 1s not grest



NACA TN 3212 o7

considering the varlations of the initial shapes from a true spherical
surface. Part of the difference can be asttributed to yielding which
occurred at the higher loads, especlially for the specimens having values
of A near 5. It is felt that the results are close enough to corrobo-
rate the theory proposed and establish the applicability of the classical
eriterion for buckling for the lower range of A (A< 5).

From figure 18 it is clear that the type of loading, ailr or oil, has
little if any effect on the buckling load. This 1s expected to be the
case if the classical buckling criterion holds, but would be rather
unexpected if Tsien's "energy criterion” applied. For in Tsien's theory
when the buckled and unbuckled energy levels are compared the loss in
potential energy of the load during buckling must be included. Since
the loss in potential energy 1s a maximum when the pressure remains con-
stant, the buckling in a constant-pressure system should occur at a lower
load than for any system in which the pressure decreases during buckling.
Rather large differences in the buckling loads between a "rigid testing
machine" (approximsted by oil loading) and a "dead-weight loading"
(approximated by air pressure loading) are predicted by Tsien in refer-
ence 6, according to the energy criterion, for complete spheres and also
for spherical domes of falrly large values of A. As remarked before,
however, the calculations as given in reference 6 are probably inappli-
cable to domes as shallow as those tested here, and a more accurate energy
expression and deflection mode should be used. Although it is impertinent
to reject the energy criterion on the basis of the disappearance of the
difference in buckling loads between the rigid testing machine and dead-
weight loading, the fact that the buckling loads given by the classical
criterion are reasonably close to the experimentsl values for A <5
seems to indicate that, at such smell values of A, a refinement of the
energy-criterion calculations is unwarranted.

The buckling stress for spherical shells is usually expressed in
the form

er

Q
I
B
et

(Gcr = é% qcr) (41)

where K 1is a numerical constant. The classical theory for the buckling
of complete spheres gives a value 6f K of order 0.606 with p = 0.3

(see eq. (2)). Tsilen's theory in reference 6 gives a K of order about
half of that given by the classical theory. The calculation based on

the classical criterion given in this pasper, for very shallow domes, also
gives a value of K ranging from 0.2 to O.4. Both reference 6 and the
present paper predict K as a function of the parsmeter A. A composite
plcture showing the results of all avaellable theoretical and experimental
data 1is glven in figure 19, where K 1s plotted against the parameter A.
It is to be remarked again that all the curves labeled "Theory" should
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be read with caution. On the extreme left, the theoretical result
according to equation (40) does not converge for values of A >5, and
extrapolation to larger A values is dangerous. On the other hand,

the curve showing theoretical results of reference 6 probebly is good
only toward the right-hand end; the left-hand end of that curve probably
should be more carefully computed. 1In other words, to do Jjustice to
either the classical criterion of buckling or the energy criterion of
buckling, both theoretical curves shown in figure 19 should be recalcu-
lated to higher accuracy. The curve showing the "classlcal linear
theory" applies only to complete spheres and 1s shown here for reference.

Even though not proved rigorously, a trend of shifting from the
classical criterion to the energy criterion at A of order 6 seems to
be indicated by the experimental results. This transitional value of
A 1s probably low on account of the imperfections of the test specimens.

A comparison of the above results with the case of low arches as
given in reference T reveals a fundamental difference, with respect to
the stabllity criteria, between the buckling under lateral forces of a
spherical dome and an arch. In the arch case the classical criterion
holds for larger values of A (1.e., higher arches), and a transition
to the energy criterion occurs as the arch becomes very low. In the
dome case the classical criterion holds for smaller values of A (i.e.,
very shallow domes), and a transition to the energy criterion occurs as
the dome becomes higher. :

SUMMARY OF RESULTS

In this paper an sttack upon the problem of the finite deflection
of a shallow spherical shell has been made. The resulis may be sum-
marized as follows:

1. The theoretical approach has been to transform the nonlinear
equations into a sequence of linear equations by expanding all the
unknown functions in powers of the nondimensional center deflectlon W,
and equating coefficients of equal powers of Wy. The initial linear
equation can be solved exectly in terms of the ber and bei functions,
but the succeeding equations have had to be solved eilther by power series
or numerical methods. For small values of the parameter A the resulting
serles converges rapidly enough so that a determination of the buckling
load can be made using only four terms of the serles. For higher values
of N the convergence deteriorates rapidly, so that for A greater than
5 no determination of the buckling load can be made. However, for deflec-
tions smaller than the critical buckling deflection, the deflection modes
can be determined for & much wider range of A. These deflection modes
change rapidly with A and for values of N near T have the surprising
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characteristic that the maximum deflectlon occurs approximetely halfway
between the center and the edge of the shell.

2. For small values of A the results of the experimental program
agreed substantially with those of the thevretical analysis. The buckling
load near A =4 was only sbout 15 percent below the theoretical value
while the trend of the buckling loads as A increased was approximately
the same as predicted by the theory. The deflection modes also showed
the same characteristics as predicted by the theory. The experimental
buckling mode was inherently symmetrical as assumed in the theory; the
few exceptions can be attributed to large ipltisl asymmetries in the
specimens.

3. Tests were made with both air and oil pressure, which approached
the extremes of constant pressure and constant volume buckling character-
istics, respectively. The buckling loads obtained by the two methods
showed no significant difference; thus a feature of the "energy criterion"
did not appear.

L. Bxperimental results seem to indicate that the classical eriterion
of buckling is applicable to very shallow spherical domes and that a tran-
sition to energy criterion occurs for higher domes.

California Institute of Technology,
Pasadena, Calif., August 13, 1953.
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APPENDIX A
INFINITE-SERIES EXPANSION

After substituting the expressions for fn and w,, equation (33),
into the second of equations (28) for Fo, it becomes

p1k 2
Fo = % -}];—(Al bei'Ax - By ber'Ax) - E_EL 181 (bei'?\x)2 -
16x°

(ber‘Kx)%] + (A12 - Blz)ber'Rx bel Axp -

2 /42 2 :
k—2(d_2 - % }%)(Al bel Ax - By ber'?\x) (A1)
32x=\dx

The particuler integral of equation (26a) corresponding to the first
term of equation (Al) is

1k

_ 3D X
8' = -3 ig—éelmbel'Ax - Bl_ber'kx) (a2)

The particular integral. for the remgining terms of Fs (all qued-
ratic in ber' and bei') is obtained by expandlng in series. 'The series
expansions for ber'Ax and beil'Ax are

1~ \4n-1 a
ber'ix = Z (_)n (5}\}:)
n=1 (2n - 1)!(2n)!
3 (43)
1. % bntl
bei'A\x = 2{: (-)" (EK )
n=0 (en)t(on + 1) J

In terms of the above serles the expansion of the quadratic terms

of F2 becomes .
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2,2 _ bn
. KA A
Fpll = - o {AlBl[a.n + b, + 2(n + 1)(2n + 1)°n+1:l(?x) +

RAle - Bf)Cn + n(en + 1)(A12an - Blzbn)](%x_)hn-z} (Ak)

wnere

= ()" 1 a
= () mz=O (en - 2m)i(en - 2m + 1)1 (2m)i(2m + 1)!
b = (<) L A
& ) II;L(2n-2m+l)'.(2n—2m+2)1(2m-l)'.(2m)! R
eg = ()" L
m=l (&n - 2m)!{2n - m + 1)!(m - 1)!m! J
The corresponding particular integral of equation (26a) is
hn hn-2
tr _12 2 2 Ax
0" = Ik ngo RNE ) (Algn+Bl h.n)(?) ] (a6)
where
q
d‘n" (Lm _l)l:zn(en-l)c %—l‘bn-l"dn-l;l nzl
-1
g, = (n-1)(2n - 1)a _; +
(2n-1)2E2n-1)2-1][
Cp-1 * gh-l] n 22 & (a1)
h, = = (n - 1)(2n - 1)b,,_q +
'(2n-1)2[ - 1)2 - 1] n-l
'hn-J] : n22
&y = h0 =0 ‘J
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The values of do, g1, and hy; are arbitrary with respect to the

recursion formula of the differential equation, but when equation (A6) is
combined with equation (A2) it is required that

o
1]

(48)

0
niFE

hy

in order that 6, = 65' + 65'' have the proper limlting value as
A —> 0. )

The coefficient g 1is completely arbitrary and for convenlence
was taken as equaling unity. :

The infinite-series expansion for ¢p 1is

2 2 bnt2 — c bn
A1%an - B1%by /N - x) n(%x)
= E - A.B, 22X
2 =0 bn+2 \ 2 B 171 2n\2 (49)

Then 8, and its derivatives and %, are substituted in equa-
tions (35) to determine ay &and B, which are in turn substituted into
the boundary conditions, equations (34), to obtain A,, Bp, and pp.
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TABIE 1 .~
VALUES OF A;, By, AND py
A Al B . %]
0.5 | -4.875 155.9 2353
7 | -3.481 56.78 5.361

1.0 | -2.434 19.39 5.441
1.5 | -1.61% 5.61k4 5.877
2.0 | -1.194 2.200 7.061
3.0 -.T7298 1093 1%4.35
k.0 -.4275 -.06698 35.97
5.0 -.183%5 -.2078 89.55
6.0 -.005114 -.1892 206.2
7.0 .07882 -.09905 hob.1
8.0 07857 -.01571 84.7
9.0 Lok -.02332 1,311
10.0 .009895 .02615 2,043
11.0 -.005344 .01498 3,051
12.0 | -.007743 . 004468 4,343
13.0 -.004895 - 0009003 6,048
4.0 -.001736 -.002132 8,219
15.0 - .00003355 -.001506 10,932




TABLE 2 -

VAIUES OF w, FOR A =4, 7, 10, AND 13

A=k A=T A =10 A =13
Wl wE w§ W)_|_ W1 W’2 H‘3 W)_l_ Wl wo w1
.0000 | O 0 o] 1.000 [0 0 0 1.000 {0 1.0000
.9965 | -.0021 | -.0018 | -.0008( 1.0011 | .0080| .020| .0521{1.0002 |-.0014{ .9999
.9859 | -.0082 | -.0072 | -.0032| 1.0044 | .0%2 079 ] .206{ 1.0010 |-.0053| .9995
.9683 | -.0181 | ~.016 -.0068'1 1.0093 | .0TO A3 4531 1.0025 | -.0091 | .9988
LO436 | -,0322 | -.027 | -.011 |1.0152 | .121 300 .782{1.0053 | -.011 .9979
9116 | -.0k70 { -.039 -.015 | 1.0211 | .182 49 | 1173 | 1.0099 | ~.018 L9970
B72h | -.065 - 051 -.019 | 1.0254 | .250 61 | 1604 | 1.,0168 | .o17 .9964
1725 | -.101 ~.073 -.025 { 1.021k | .386 938 | 2.435 | 1.0381 { .1l12 .9993
6453 | -,130 -.081 -.019 L9825 | WA | l.1bi ] 2.952 1 1.0625 | .300 | 1.0148
J958 [ ~.1h1 -.07Th -.0092| .8832 | .480 |1.129}2.905}f 1.0608 1 .517 | 1.0438
3338 | -.126 -.053 L0006| .7016 | .366 8631 2,187 .9708 | .61k | 1.0437
2535 -.110 ~.039 L0034y 5787 .289 H8% ) 1.7771 8672 .58L .9955
1769 | -.087 -.025 L0037 4391 191 L4731 1.282 ,71kg | 463 .8851
1085 | ~-.059 ~.0L3 .0031] .2920| .106 280 .740| 51691 .306 L6945
0525 | -.032 -.0048 .0018]| .1528 | .oko JA27| 348 2938 | .139 L1290
L0143 | -.0087 | -.0011 .0052| .ouu8 | .oo87( .032| .089| .093L| .03k 2660
0 0 0 0 0 0 0 0 0 0 0
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TABLE 3

VALUES OF £, FOR A =%, 7, 10, AND 13

f2 f5 £y 1 fo fj )y £y i

1.353 | 0.180 | 0.0788 | -16.246 | -2.038 -7.0% | -17.56 | -37.21 | -65.43
1.354 .180 0781 | -16.250 | -2.069 -7.11 | -17.77 | -37.21 | -65.43
1.358 .183 0760 | -16.262 | -2.159 -T.34% | -18.38 | -3T7.22 | -65.42
1.364 .186 072k | -16.282 | -2.305 ~7T.TL | -19.38 | -37.25 | -65.41
1.372 | .191 | .0675 | -16.306 | -2.504 | -8.21 | -20.72 | -37.25 | -65.40
1.381 196 L0612 | -16.334 | -2.749 -8,82 | -22.36 | -37.27 | -65.39
1.391 .200 0538 | ~16.360 | -3.030 | =9.52 | -2k.23 | -37.32 | ~65.37
1.k09 .207 L0361 | -16.392 | -3.670 | -11.08 | -28.39 | -37.45 | -65.37

1.418 207 0169 | -16.353 | -k.293 | -12.54 | -32.25 | -37.6k | -65.1k

1.h10 198 | -.0002 | -16.178 | -4.760 | -13.58 | -34.92 | ~37.82 | -65.67
1.377 A8k 1 -.0127 1 -15.795 | -k.552 1 -13.92 | -35.80 | -37.76 | -65.95
1.350 176 | -.0163 | -15.507 | -%.929 | -13.83 | -35.57 | -37.54 | -65.96
1.317 67 | -.0179 | -15.153 | -4.837 | -13.58 | -34.94% | -37.12 | -65.73
1.278 159 | -.0182 | -14.7A7 | -&.697 | -13.22 | -34.02 | -36.46 | -65.09
1.236 52 | -.0180 | -14.271 | -k.530 | -12.79 | -32.91 | -35.56 | -63.92
1.193 A6 | 20175 | -13.780 | -k.360 | -12.33 | -31.79 | -37.46 | -62.18
1.153% L1 | -.0170 | -13.30% | -2.206 | -11.90 | -30.65 | -33.30 | -60.12
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TABLE Lk

VALUES OF p, (n = 2) CALCULATED

P2
A P3 by
§2¥?Zs Numerical

1.0 -1.120

1.5 -2.726

2.0 -k.919

3.0 | -12.39

.o | -26.47 -26.5 3.77T 1.08
5.0 | -45.2

6.0 | -38.1

7.0 53.7 56.6 314 801
8.0 | 219
10.0 392
15.0 537

37



38 NACA TN 3212
TABLE 5
EXPERIMENTAL DATA
[ﬁ = 0.32, E =6.5x 100 psé]
(a) Hydraulic pressure tests
Method of pressure
Specimen | ©» h, ) Qers Por measurement (Pcr)2
in. in. psi (2)
1 0.101 | 0.251 | L.ok | 36.2 12.3% B | eemee-
2 099 | .253 | 4.08 1! 32.5 11.8 B | eemme-
3 A0l | .256 | 4.16| 35.8 12.1 B | eemae-
L 100 .365 | L4.80] 60.5 21.0 B | eecaea
5 01| 376 [ L.ok | T72.5 24.8 B | eem———
6 053 | 240 | 5.45 | 14.0 61.3 M 25.3%
T 053 | 251 | 5.57| 12.1 54.3 M 25.3
8 0521 297 | 6.08] 15.2 1.3 B 48.3
9 055 | 380} 6.75] 31 122.4 B 60.0
10 051 k10| T.22) 27.5 | 147 B 85.1
11 . 0Bl | k22 | T.h0| 25.2 | 136 B 60.9
12 031} .%303 | 8.04] L.,2 }165 B 106
13 0321 .361 | 8.59{ 6.02| 201 M 124
14 031 ] .353 | 8.69| L4.59] 185 M 137
15 033 394 | 8.82] 7.33]| 213 M 111
16 033 | 410 | 8.98] 8.96| 255 ° M 179
17 L0291 Mk |10.1 6.7 | 354 B 201
(v) Air pressure tests
£ h Pressure required .
Specimen i’ i’ A Qer Per to unbuckle specimen,
n. n. Psi . pSi
18 0.101 | 0.382 4,981 73.5 2k.9 16.5
19 .101 426 5.26 | 99.5 33.8 35
20 .055° .265 5.62 | 16.85 65.2 ———
21 054 413 7.10 | 33.6 143 12.6
22 .032 34T 8.45 | 5.67 | 190 1.8
25 033 <399 8.91|11.75 | 350 3.3

a.B,

Bourdon gage; M, manometer.



Figure 1.~ Notation.
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Filgure 2.- Buckling mcde for a high arch.

Figure 3.~ Poasible buckling Figure 4.- "Applicable" and approx-
mode of low arch. imately “"applicable" surfaces.
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Figure 5.- Equilibrium of a central cylindrical section.

L1



S

zo\
13\

>/&//
/

VoA )
—

\\ N
N
RN
\\&
o .2 3 4 5 .6 e .8 9 1.0
X = £/fq

Figure 6.~ Variation of linear deflection mode wy with A
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Pigure 13.- Comparison of experimental buckling loads with theoretical
values.
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Figure 15.- View of testing fixture
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Figure 16,- Experimental deflection shapes.
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Figure 17.- Experimental pressure - cemter-deflection CUrves.
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Figure 18.- Experimental results.
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